If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+3x=40
We move all terms to the left:
4x^2+3x-(40)=0
a = 4; b = 3; c = -40;
Δ = b2-4ac
Δ = 32-4·4·(-40)
Δ = 649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{649}}{2*4}=\frac{-3-\sqrt{649}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{649}}{2*4}=\frac{-3+\sqrt{649}}{8} $
| 18x+5(4-x)=40 | | (2w-5)(w+2)=-8 | | r^2+144=r^2+36 | | 13=-3t-5 | | 26-11x=(4-x)(4-x) | | 2=0.1x-0.2-5 | | 1+4(x+2)=13 | | -11=(2x/3)-9=-8 | | 3/4c=11,1/4 | | 3(3x-6)=5x+1 | | 2-3x+9x=14 | | x+9=2(+35) | | x+9=(x+35) | | 18x+9=2x+5 | | (3k-8)(k+3)=-17 | | 10a-7=-27 | | 18x+9=x | | 4x^2+4=17× | | 18x+9=(2+5) | | 9(x+8)+8=8(x+8)+10 | | 8n2-4=532 | | 7(x-3)-4x=10 | | 5x-(3x+1)+4=32 | | (10x-20)+(7x+4)=180 | | X*2.5=2.75*x | | 2n/3n=3+1n/2n | | 23/x=4.6 | | 3y-2=6y+12 | | 6×(2x+4)=4×(3x+6) | | -7(-6-6/7x)=12(x-31/3) | | -7(-6-6/7x)=12(x-31/3 | | 90+6x=4x |